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ABSTRACT
eBPF (Extended Berkeley Packet Filter) is a Linux kernel subsystem
that aims to allow developers to write safe and efficient kernel
extensions by employing an in-kernel verifier and just-in-time com-
piler (JIT). We find that verification is prohibitively expensive for
resource-constrained embedded systems. To solve this we describe
a system that allows for verification to occur outside of the embed-
ded kernel and before BPF program load time. The in-kernel verifier
and JIT are coupled so they must be decoupled together. A desig-
nated verifier kernel accepts a BPF program, then verifies, compiles,
and signs a native precompiled executable. The executable can then
be loaded onto an embedded device without needing the verifier
and JIT on the embedded device. Decoupling verification and JIT
from load-time opens the door to much more than running BPF pro-
grams on embedded devices. It allows larger and more expressive
BPF programs to be verified, provides a way for new approaches to
verification to be used without extensive kernel modification and
creates the possibility for BPF program verification as a service.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; Operating systems; • Computer systems organiza-
tion → Embedded software.
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1 INTRODUCTION
Extended Berkeley Packet Filters (referred to as BPF) provide a
way for users to extend the Linux kernel safely. BPF programs are
attached to the Linux kernel such that whenever a certain event
occurs, the program is run. Each program must be verified by a
static checker before it is loaded into the kernel to ensure kernel
safety.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
eBPF ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0293-8/23/09.
https://doi.org/10.1145/3609021.3609299

Embedded systems increasingly run Linux kernels and there
is a desire to use BPF programs for increased observability and
improved performance on these platforms [3, 18]. Despite kernel
support for BPF programs, there are challenges to running BPF
programs on embedded systems due to their resource constraints.
The compilation from high level languages to BPF bytecode requires
a toolchain of software that is large and computationally expensive.
This has been mitigated by using another machine to compile the
program [2]. However verification still remains in the kernel on the
embedded device. As we show in section 2, the cost of verifying BPF
programs on embedded devices is up to 70x slower than a server,
which is prohibitively expensive.

The solution to this cost is to allow verification of BPF programs
to happen outside of the embedded device. However, we cannot
remove verification without also considering the just-in-time com-
piler (JIT) because these two mechanisms are coupled inside the
kernel. We present a system that allows for BPF programs to be
verified and compiled to native code on a dedicated verifier kernel
and then loaded into the embedded kernel. We faced three difficult
technical challenges:

• The verifier kernel needs to produce exactly what would
have been produced by the embedded kernel;

• The embedded kernel cannot trust that an executable not
created by it is safe; and

• The external kernel puts symbols and addresses into the
jitted BPF program that are completely foreign to the em-
bedded kernel.

We overcome these challenges by using a virtual machine to
verify and JIT the program. The external kernel then combines
the jitted native code with metadata outlining the structure of the
program as well as the symbols and addresses used to allow the
embedded kernel to relocate symbols and addresses. Finally the
external kernel signs this combination to show that the program is
safe.

Decoupling verification and JIT has much broader implications.
It allows for significantly more complex and expressive BPF pro-
grams by allowing dedicated systems to spend as much time as
needed to verify large programs. It also allows for new approaches
to verification and JIT compilation to be more easily used. Addi-
tionally, it opens the door for systems like verification as a service
and parallel verification. No longer will projects be forced to deeply
modify Linux kernel code in order to bring their new BPF ideas
into use.

2 BPF ON EMBEDDED SYSTEMS
BPF is a Linux kernel subsystem that allows users to extend the
kernel safely. BPF programs are typically written in a high level
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programming language and then compiled to BPF bytecode. The
bytecode is then sent to the in-kernel BPF verifier to statically
check the program. To keep verification tractable and timely, the
verifier also has strict limitations on the number of instructions
that a BPF program can have, and that there can be no unbounded
loops [21]. After the bytecode is deemed safe, it is JIT compiled into
a native executable. All of this processing occurs when the program
is initially loaded into the kernel.

Many embedded systems run Linux kernels instead of custom
operating systems. In the hobbyist and maker markets single board
computers like the various flavors of Raspberry Pi [29] and Beagle-
Bone [7] run Linux based operating systems. Other projects such
as OpenWRT [25], Buildroot [8], and the Yocto Project [28] all seek
to make running Linux on embedded devices as simple as possible.
In the remainder of this section we provide context on why BPF is
useful on embedded systems, as well as highlight two challenges
stemming from their resource constraints which are:

(1) Compiling BPF programs requires an external system.
(2) Verification of BPF programs is expensive on embedded sys-

tems.

2.1 BPF is Useful on Embedded Systems
Despite not being intended for embedded systems, BPF programs
can be quite useful on embedded systems. Currently, BPF is exten-
sively used to achieve system observability [6, 24, 27]. In cluster
or server production environments increased observability over
system performance is incredibly valuable. For embedded systems
it is also valuable, for example in support of a network of inter-
net of things (IoT) sensors or to provide finer grained insight into
performance [3, 18].

Another compelling use case is to increase the performance of
embedded systems. Multiple projects have used BPF programs to
successfully increase performance in systems [1, 10, 32]. In em-
bedded systems, system hardware is even more limited so it is
important to maximize the performance of the software that runs
on them.Work has been done to use BPF programs on the Raspberry
Pi to create a performant data plane for IoT sensors and networks
making use of the limited eXpress Data Path (XDP) [1] capabilities
of the Pi [18].

BPF programs also present a way to safely and dynamically
change the behavior of the kernel without reboot in response to
changing conditions. This technique has been explored in server
deployments of BPF programs to change the configuration in re-
sponse to runtime conditions [22]. In the real time operating system
community, a work created their own BPF runtime for a non Linux
kernel to create a system that allows live patching their embedded
devices [13].

These use cases have emerged even with the current difficulties
of running BPF programs on these devices. We expect new use
cases to be developed when it becomes easier to make use of BPF
programs, especially considering the benefits that can be gained
from offloading part of or entire workloads into kernel space instead
of user space.

Figure 1: A comparison between the time to verify a BPF pro-
gram on an embedded system and a more powerful system.
Error bars show one standard deviation above and below the
mean.

2.2 External BPF Bytecode Compilation
Embedded devices have strict resource constraints in all system
resources, including storage. It is imperative to optimally use these
resources. Typically BPF programs are compiled to BPF bytecode
using LLVM [4]. Projects such as the BPF Compiler Collection
(BCC) [15] seek to make building BPF programs easier by providing
tools for development and the ability to use Python and Lua as high
level languages. The large resource footprint of BPF toolchains
makes it hard to justify installing and running them on embedded
systems. Compilation is expensive and does not make sense to run
on resource constrained systems. Additionally both of these tools
are large and place a burden on limited amounts of storage on
embedded systems.

These problems have been mostly solved by using an external
dedicated machine to compile BPF programs into bytecode. Because
BPF bytecode is machine agnostic [11] no cross compiler is needed,
and it is easy to compile on an external machine using standard
tools.

2.3 Verification is Expensive
A more difficult problem for running BPF programs on embedded
devices is that BPF program verification, which occurs every time
the program is loaded, is expensive. The verifier uses two passes
through the BPF program to verify its safety. The first pass ensures
that the program does not exceed the maximum number of allowed
instructions defined by the kernel, as well as checking for loops,
illegal jumps, and unreachable instructions. The second pass in-
volves walking through all possible program paths to make sure
there are no branches where kernel safety is compromised [21].
More complex BPF programs take longer to verify as the possible
number of program paths increases significantly.
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Figure 2: The number of times slower the Pi was to verify
the same programs as the server.

For many systems, the cost to verify programs can be minimal,
but for less powerful embedded systems, verification can be prohib-
itively expensive. To quantify this, we conducted an experiment to
measure the difference in the time for verification between servers
and embedded systems. We started with the downstream Raspberry
Pi Linux 6.1.31 kernel, and then added a set of small modifications
to measure the time taken to run the verification and JIT functions.
We compiled and configured this kernel to run on the Raspberry Pi
Zero W and to run in a QEMU virtual machine hosted on a system
with an Intel Xeon Gold 5317 processor and 256GB total of system
memory. Because we modified the Linux kernel, we decided to use
a VM to simplify the process of using the new kernel on our server.
We decided to limit the VM to only use 4 CPU cores and 4GB of
RAM because currently BPF verification only runs on one CPU core
and from informal testing we did not see verification time change
based on the available system memory, assuming there was enough
available. 4GB of RAM is more than sufficient to verify all of our
test programs as well as support the kernel.

We created a series of synthetic BPF programswherewe specified
the number of possible paths through the program, which is the key
factor affecting verification time. We generated programs where
the number of paths is a given power of 2. Each program contains
nested if statements that take branches based on a random number
that is generated after each branch in order to avoid state pruning
[21]. Because state pruning can greatly reduce the number of states
to check, our results represent more of a worst case than an average
case. We used bpftool version 7.1 to load each of our programs into
the kernel. The verifier succeeding in verifying all our programs
from 2 to 2048 paths before it started rejecting them. With our
modified kernel we collected data on the time to verify, JIT, and the
total load time for each program. We loaded each program a total
of ten times and computed the average of the trials.

Figure 1 and Figure 2 show that there was between a 19x and
70x slowdown in BPF program verification time between the server
and the Pi. Additionally, we analyzed the data for the Pi and found
that between 91% and 99% of BPF program load time was spent

doing verification, showing that JIT compilation does not represent
a significant cost. There are many potential confounding factors
in the absolute interpretation of the results such as differences in
architecture, the overhead of running in a VM, and the differences
needed in kernel configuration to run on the Raspberry Pi. Fur-
thermore, we expected there to be a constant factor for slowdown
between the Pi and the server, but our data shows that there is
another pattern that we cannot currently explain. Regardless, our
experiment gives an idea of how much slower embedded systems
can be for BPF program verification. From our experiment, we con-
clude that this degree of slowdownmakes it prohibitively expensive
to verify BPF programs on embedded hardware, especially as BPF
programs evolve to be larger and more complex [10].

3 DECOUPLING VERIFICATION FROM THE
KERNEL

We identified five key design goals:
• Enable pre-verified programs to be loaded into any
compatible kernel: We wanted our solution to be general
and not tied to any specific architecture.

• Provide a way to increase the allowed complexity, and
thus expressibility, of BPF programs on embedded sys-
tems: Current embedded systems have limitations on the
complexity of BPF programs that they can run because of
resource constraints.

• Allow cross-architecture verification:Wewanted tomake
use of available performant x86 hardware to run our dedi-
cated verifier.

• Achieve full compatibility with the Linux verifier: We
wanted our system to be fully equivalent to the current in-
kernel verifier except for when verification occurs.

• Ensure that the safety guarantees made by the verifier
still hold for our pre-verified program: We wanted to
make sure that we did not lose any safety properties given
by the BPF verifier

To meet our design goals we concluded that the verification of
BPF programs should be decoupled from the kernel andmoved away
from load-time. Because BPF compilation already makes use of an
external computer this approach does not add additional hardware
requirements. We found that an immediate consequence of this
decoupling was that JIT compilation also needed to be moved along
with verification. Currently verification and JIT are tightly coupled
inside the kernel. For example, the maximum allowed number of
tail calls in a BPF program is 33 [5], but we found that this check
occurs inside the JIT code, rather than the verifier. The verifier and
JIT work together to ensure BPF program safety, so it is nontrivial
to separate them. We decided the solution to this is to decouple the
JIT along with the verifier. 1 As an added bonus, decoupling the JIT
as well increases the flexibility of our system. Users should be able
to produce a BPF program, verify and JIT it once per architecture,
and then load it into any compatible kernel. This solves the issue
of prohibitively expensive verification on embedded machines. A
BPF repository of sorts could be created that hosts pre-verified,
jitted, and signed BPF programs for anyone to download and load

1There are benefits to leaving the JIT in place that we discuss in Section 3.3
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Figure 3: System Design Overview

into their kernel. A further discussion of the benefits to decoupling
appears in Section 4.

3.1 Design Challenges
Our design idea and goals led to several main challenges that had
to be overcome:

(1) The verifier kernel needs to verify and JIT the program iden-
tically to how the embedded kernel would;

(2) The embedded kernel can not trust that the foreign exe-
cutable created by verifier kernel is safe; and

(3) The jitted native code contains symbols and addresses from
the verifier kernel that are totally foreign to the embedded
kernel.

3.2 Design Walk-through
Our design in Figure 3 has four main stages. We use a virtual
machine running a dedicated verifier kernel which will verify the
BPF program. First we load a program in BPF bytecode format into
the dedicated verifier kernel. In that kernel we verify the bytecode
and then produce a native executable by using the JIT compiler.
We have to ensure that the generated native code is for the same
architecture as the embedded kernel. In our prototype we achieved
this by emulating the architecture of the embedded kernel on an
x86_64 server.

Once the program has been verified and jitted, the dedicated
kernel collects metadata about the BPF program and combines it
with the jitted native code. The dedicated kernel then signs the
combined jitted code and metadata. This signature is the guarantee
that the program is safe to execute. Because we used the in-kernel
verifier, this signature means that the BPF program would have
been verified on the embedded device given enough time.

After the program has been signed, we need to extract the com-
bined native code and metadata. Certain parts of the program will
need to be relocated when loaded into the embedded kernel. We use
part of the metadata to build a relocation table to make relocation
easy once the embedded kernel tries to load the program. The rest
of the metadata is used to create the necessary kernel structures
that would have been created by the verifier.

After extraction we are left with a signed binary blob containing
the native executable code for the embedded system, some reloca-
tions, and other required metadata. This then gets loaded into the
embedded kernel, which makes sure that the signature is valid. If it
is invalid, then the program is rejected. Otherwise the embedded
kernel goes to work resolving relocations and creating necessary
structures. After this is complete we have successfully loaded our
BPF program into the embedded kernel.

We will now examine various stages of the design and how they
relate to our design goals and challenges.

3.3 Achieving Complete Compatibility
The verifier kernel is a trusted system that handles verifying and
jitting the BPF bytecode. Rather than create a custom verifier we
make use of the in-place Linux verifier and JIT. These kernel compo-
nents may contain bugs or quirks that subtly change what programs
are allowed and how programs are actually converted to native
code. For our goals, we want to ensure that we only load programs
that would verify and JIT on the target kernel given enough time
and system resources. Our system is then completely compatible
with the Linux kernel. As discussed further in Section 4, our system
could potentially be expanded to allow other verifiers, like PREVAIL
[9], to verify the safety of the BPF bytecode or other JITs to emit
customized native code.

Another aspect of compatibility is that our system has to deal
with cross-architecture compilation. As mentioned in the walk-
through, our initial solution to this is to use a virtual machine
emulating the same architecture as the embedded system. This is
the most straightforward solution and is viable because the VM
only needs to verify and JIT the BPF program one time. Another
more complicated solution we are investigating is plugging in the
JIT code for other architectures into a kernel native to the dedicated
server. For examplewe could run the ARM JIT on an x86 kernel. This
would alleviate the performance overhead of emulating another
architecture.

We could avoid challenges with cross-architecture JIT by leaving
the JIT in place. This allows for potential device specific JIT opti-
mizations. As shown in Section 2, the time spent on JIT compilation
is not a significant contributor to overall BPF program load time.
However, to do this we need to break the coupling between the JIT
and verifier. We also do not get the benefits of producing precom-
piled native code. Our initial design is to take the JIT out of the
kernel, but we are doing more investigation into which approach
is best.

3.4 Ensuring Trust and Safety
The key feature of using BPF is that programs are guaranteed
to be safe. By decoupling the verification of BPF programs from
the specific kernel that they will be running on, we need a way
to communicate that the BPF program is in fact safe. We do this
by having the verifying kernel sign the created binary blob. This
signature is only as good as the user’s trust in how they obtained
the binary blob and their trust in the verifying kernel. One use
case we envision is individuals using virtual machines to verify and
sign their own BPF programs for deployment in their own systems.
Safety is then guaranteed. For other applications, the trust needed
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becomes similar to other Public Key Infrastructure policies. Some
central trusted authority would have to create the BPF program
blobs, and then distribute them. This approach is well known and
straightforward to implement efficiently.

3.5 Relocating Foreign Addresses
Importantly there are two core features of BPF programs that must
be relocated when loaded into a new kernel. The first are helper
functions which are functions defined in the kernel that BPF pro-
grams are able to call. Each helper function has a canonical num-
bering that is shared between different kernel versions. Due to
KASLR, differing kernel configurations, and differing load times
and environments, the addresses of helper functions will not be
the same between two kernels. To relocate these calls we use two
mechanisms. The first is that the verifier kernel creates a relocation
table for these functions. The table consists of offsets to call instruc-
tions in the jitted native code matched with numbers specifying
which helper function is supposed to be called. This information is
used by the target kernel when we load the jitted BPF program blob.
Once the target kernel has created the necessary kernel structures,
we know where the jitted BPF program will be loaded. This allows
us to rewrite the binary instructions using the relocation table and
kernel functions to resolve symbols to addresses.

The second feature that needs to be relocated are maps. Maps
are the primary way for BPF programs to persist data and share it
from kernel space into user space. Unlike helper functions, maps
are created dynamically and do not have a fixed address in kernel
memory. We envision solving map relocations in a similar way
to solving helper function relocations. Slightly more work will be
needed to locate the address of the needed maps, but once we have
that information we should be able to link everything up using our
relocation metadata.

3.6 Implementation Status
To date, our implementation effort is at an early stage. As a first
step, we are focusing on extracting the jitted BPF program from the
verifier kernel and locating the symbols that will need adjustment
(e.g., for helper functions).

4 TOWARDS VERIFICATION AS A SERVICE
Although we have motivated decoupling as a way to enable BPF
programs to be run on embedded systems, it also opens new and
exciting opportunities for the BPF ecosystem:

(1) Decoupling allows increased BPF program complexity;
(2) Decoupling provides a way to expand the verification and

JIT ecosystem surrounding BPF; and
(3) Decoupling allows new approaches to be taken to BPF pro-

gram development and infrastructure.

4.1 Raising BPF Limits
Currently the verifier places strict limits on the number of instruc-
tions that a BPF program can have, and the number of instructions
that the verifier can check [20]. The intention is to force BPF pro-
gram verification and JIT to run in a reasonable amount of time. By
decoupling verification and JIT from load time we allow an increase
to the verifier limits.

From our experiment we showed that there is a large disparity
between program verification time on differently sized hardware.
We want to use our system to investigate how much more compli-
cated we can make BPF programs when they have large amounts of
computing horsepower behind them. Powerful systems can verify
large programs much faster than less powerful systems. Decoupling
allows these systems to spend as much time as needed to verify
BPF programs of any complexity. The output of this is a safe BPF
program that does not need to be verified ever again.

Some current projects are already pushing the bounds for what is
possible with the verifier. BMC uses BPF programs to significantly
increase the performance of Memchached [10]. Their program con-
sisted of 513 lines of C code and required 7 different BPF programs
to implement. This technique is called chaining, and incurs over-
head. Each program uses a tail call [5] to call into the other parts
of the program. BPF programs can also use BPF-to-BPF calls [5]
to call into other verified BPF programs. The KFuse [17] system
minimizes this overhead for tail calls, but does not mitigate the
decreased ability of programmers to reason about their programs.
Having to separate programs based on verifier constraints rather
than natural program boundaries is not a good solution to building
larger BPF programs.

Work on implementing complex network services using BPF
has been promising [22]. This work features many tricks to create
larger and more complicated BPF programs that can still be veri-
fied. One such trick they used was to send packets into user-space
and then process them there. They found a significant reduction
in performance from this approach. Limitations from the verifier
forced them to implement their extensions in a less performant
way than the in-kernel network stack. For these kind of extensions
to be valuable they need performance at least comparable to in-
kernel processing. If the complexity allows it, we could replace
entire kernel components with user provided BPF programs.

4.2 Expanding the Ecosystem
Currently BPF verification and JIT exist in an isolated system inside
the kernel without a good way to incorporate new tools. Work has
been done to create a new verifier, PREVAIL, with a formal basis [9].
The PREVAIL verifier has better asymptotic complexity than the
in-kernel verifier, but without additional work, it cannot be used
when loading real BPF programs into the Linux kernel. However,
PREVAIL is the verifier for eBPF For Windows [30], which shows
that the BPF community is interested in PREVAIL and has trust in
its ability to verify BPF programs. Work has also been done to for-
mally verify the in-kernel JIT [23], which led to multiple bug fixes
and JIT improvements being incorporated into the Linux kernel.
Verifier and JIT design incorporate trade-offs, and there may not be
a one size fits all solution. Custom components may perform sig-
nificantly better than the general in-place verifier and JIT. Despite
the potential for custom verifiers and JITs, the current design of
the BPF subsystem does not allow them without extensive kernel
modifications. The problem of verification and JIT is more nuanced
than a tightly coupled in-kernel system can allow. Decoupling veri-
fication and JIT from the kernel allows the ecosystem to expand by
providing an easier way to incorporate new projects and ideas.
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Figure 4: One possible design for distributed verification pro-
ducing executables for multiple platforms.

4.3 Allow New Approaches
Decoupling verification allows for new approaches to be made for
BPF programs. An interesting idea is whether or not BPF program
verification can happen with some form of parallelization. If state is
copied and information about what branches are to be checked can
be communicated and synchronized between processes, then we
may be able to further increase the size and complexity of our BPF
programs. It also opens the possibility of having distributed BPF
program verification, where many machines each verify chunks
of a single large BPF program. One initial design idea is shown
in Figure 4. Without decoupling verification from load time, these
would not be feasible. An offshoot of this is the potential industry
of verification as a service. Users upload BPF bytecode and get back
a verified BPF binary blob that can then be loaded.

BPF bytecode is machine agnostic, so it should be able to be
run on any machine that supports BPF. Efforts such as BTF and
Compile Once Run Everywhere (CO-RE) [11] aim to support this
on a bytecode level. Notice that a program that is verified once,
should always be verified assuming it has not been changed. Can
we incorporate these ideas to create a Verify Once Run Everywhere
(VO-RE) system for BPF? Implementing this means that one could
create a super kernel that can verify, compile, and sign BPF pro-
grams for any supported architecture, potentially at the same time.
Alternatively we could create BPF fat binaries that contain native
instructions for a few common architectures.

5 RELATEDWORK
Our work is central to a large collection of additional work. Projects
such as PREVAIL [9] aim to create a more efficient BPF verifier
that also has a robust formal foundation. Changing the asymptotic
bounds of verification allows much more complicated programs to
be verified, which increases the expressibility of BPF programs. We
also see projects like K2 [31] which aim to generate more optimized
but equivalent BPF bytecode.

Recent work has made the claim that kernel verification is un-
tenable [16]. They propose that BPF extensions should be written
in Rust in a system that guarantees safety through a combination of
runtime mechanisms and language safety features. Their main con-
cerns with the verifier are that it places unreasonable constraints
on BPF programs and that it cannot verify the safety of helper func-
tions. Our system works to alleviate the first concern, and creates a
platform to provide verification for helper functions.

All of these works seek, at least in part, to make BPF a more
expressive programming language. They also present opportunities
for our decoupling work. Moving verification and JIT outside the
kernel allows other non-kernel programs to handle verification
and JIT. This allows for customizable verifiers with more or less
properties that they guarantee.

The BPF-for-Windows [30] project uses an external verifier to
verify BPF programs. Like our design it incorporates a signature
scheme to show to the OS kernel that the program is safe. It uses
non-kernel tools to provide verification and JIT capabilities on
Windows.

Outside of BPF verification, many projects are focusing on in-
creasing the extensibility of the Linux kernel utilizing BPF programs
and traditional kernel extensions. One project seeks to allow users
to modify kernel locking behavior [26]. It makes use of BPF and
Livepatch to modify the running kernel in place. Other projects seek
to include BPF to speed up core operating system tasks. eXpress
Data Path (XDP) [1] and eXpress Resubmission Path (XRP) [32]
seek to utilize BPF to improve the performance of the networking
stack and IO respectively.

We can also look to the Java programming language for inspi-
ration. It implements the Java Virtual Machine, and compiles Java
code into Java bytecode [19]. Java bytecode is then JIT compiled
again into nativemachine code. There are some similarities between
Java and BPF that may provide insights. Throughout Java’s history,
there has been work to improve its JIT. One attempt to make the
Java JIT better used trace based compilation [12]. Instead of com-
piling whole functions, the JIT focused on compiling frequently
executed paths through the program. Another work focused on
tuning the JVM JIT automatically to achieve the best performance
[14]. The BPF JIT may be able to benefit from the history of work
on the Java JIT, especially if larger and more complicated pieces of
software are able to be verified.

6 CONCLUSION
There is a growing need and interest for custom extensions to
the Linux kernel, but kernel programming is hard and can have
disastrous consequences. BPF programs present a powerful tool to
allow users to safely modify and extend the kernel without needing
in-depth knowledge of Linux kernel internals. An underappreciated
use case for BPF programs is in embedded systems. In this work we
presented a system to allow embedded systems to make use of all
the great benefits associated with the BPF subsystem. Decoupling
verification is also the first step in growing a new BPF ecosystem
with more complex programs and more desirable use cases. BPF
is a powerful tool for kernel extensions with use cases far beyond
what it is used for now. Expanding the range of machines that BPF
can run on is one step towards realizing the potential of BPF. This
work raises no ethical considerations.
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